

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶):志盛翔 (日期):2017-03-18

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : GT 35V2200μF(φ16x25)

VERSION (版本) : 01

Customer P/N :

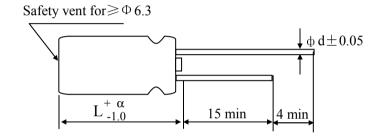
SUPPLIER :

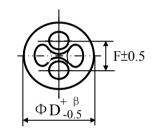
SUPPLIER							
PREPARED (拟定)	CHECKED (审核)						
李婷	王国华						

CUSTOMER							
APPROVAL (批准)	SIGNATURE (签名)						

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT			ALTERNA	ATION HIS ECORDS	TORY
		GT SERIE	ES				
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver


Version 01 Page 1


ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

Table 1 Product Dimensions and Characteristics

Unit: mm

α	L<20 : α=1.5; L≥20 : α=2.0
β	$\Phi D < 20 : \beta = 0.5; \Phi D \ge 20 : \beta = 1.0$

* If it is flat rubber, there is no bulge from the flat rubber surface.

N	SAMXON Part No.	WV	Cap.		Temp.	tanδ	Leakage	Current at 105℃ At 20℃ 100KHz 100KHz	Load	Dimension (mm)			Sleev	
0.		(Vdc)	(μF)	(μF Cap. tolerance	range(°C)	(120Hz, 20℃)	Current (µA,2min)		100KHz	lifetime (Hrs)	D×L	F	фd	e
1	EGT228M1VK25RR**P	35	2200	-20%~+20%	-40~105	0.12	770	2552	0.028	10000	16X25	7.5	0.8	PET

Version	01	Page	2

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

CONTENTS **Sheet** Application 4 1. 2. Part Number System 4 Construction 3. 5 4. Characteristics 5~10 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 $tan \delta$ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" Attachment: Application Guidelines 12~15

ELECTROLYTIC **CAPACITOR SPECIFICATION** GT SERIES

SAMXON

1. Application

330000

1000000

1500000

2200000

3300000

3.3T

10M

15M

22M

33M

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 7 1 2 3 4 5 6 8 9 101112 1314 EGS 1 0 5 М SLEEVE SERIES CAPACITANCE VOLTAGE CASE SIZE SAMXON SLEEVE PRODUCT LINE MATERIAL Tolerance (%) Code Cap(MFD) Voltage (W.V.) Code Feature Code Diameter(4) Code 3 B 3.5 1 4 C 5 D 6.3 E 8 F 10 G 12.5 I ESM EKF ESS EKS 0D For internal use only 104 0.1 2.5 0E (The product lines 0G we have H,A,B,C,D, Ammo Taping 0.22 224 ±10 6.3 OJ E,M or 0,1,2,3,4,5,9). 8 0K 0.33 2.0mm Pitch 10 1A ± 15 L 12.5 1B TU 2.5mm Pitch 0.47 16 1C M 20 1D ±20 TV 105 3.5mm Pitch 1E 16.5 18 30 11 5.0mm Pitch Р 2.2 225 Ν ± 30 32 13 1V Lead Cut & Form 3.3 335 w 40 1G СВ 42 1M CB-Type 475 4.7 Α 50 1H CE-Type CE 57 1L 106 10 -20 +10 63 1J С HE-Type HE 226 18 22 71 1**T** 75 -20 +40 × KD-Type KD 33 80 1K 85 1R -20 +50 s FD-Type FD 476 19 90 100 2A 4.5 5 5.4 45 ЕН-Туре EΗ -10 0 В 100 120 20 2B 125 PCB Termial 220 227 -10 +20 v 150 2Z160 2C sw 330 337 -10 +30 0 180 2P 2D 200 Snap-in sx 470 477 -10 +50 т 215 22 220 2N SZ 2200 228 -5 +10 230 23 Е Lug SG 250 2E 22000 229 -5 +15 275 2T F O5 300 21 33000 339 -5 +20 310 2R G O6 315 2F 47000 330 2U +20 R Т5 350 2V 100000 10T +30 360 2X 0 Т6 375 2Q: 150000 15T +50 385 2Y ı D5 400 2G 220000 22T +5 +15 420 2M

z

D

Υ

+5 +20

+10 +50

450

500

550

600

630

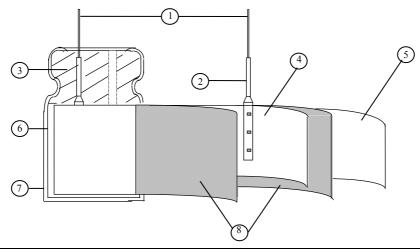
2W

2H

25

26

Version 01	Page	4
------------	------	---


D6

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature :15°C to 35°C Relative humidity : 45% to 85% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature $: 20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Page	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

	ITEM	PERFORMANCE										
	Rated voltage											
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100		
4.1		SV (V.DC)	8	13	20	32	44	63	79	125		
	Surge voltage (SV)											
4.2	Nominal capacitance (Tolerance)	Condition> Measuring Free Measuring Volumeasuring T Criteria> Shall be with	oltage emperat	: N ure : 20)±2℃	than 0.5V						
4.3	Leakage current	Condition> Connecting the state of	then, me				istor (1	k Ω ± 10	OΩ) in s	eries for		
4.4	tan δ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	-	itance, fo	r measu	ring frequ	ency, vo	oltage and	d tempera	iture.		
4.5	Terminal strength	0.5n Over 0.:	ength of apacitor rength of apacitor, 2~3 second rength rength of apacitor, 2~3 second rength r	f Termina applied f onds, and d wire	Tens	ent the tent it for 9 ile force (kgf) 5 (0.51) 0 (1.0)	rminal (0° to its	1~4 mm toriginal properties (kg 2.5 (0 5 (0	from the position of the posit	rubber) twithin 2		

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition></condition>								
		STEP	Testir	ng Tempe	rature(°C)			Time		
		1		20 ± 2),	Time	to reach t	thermal e	equilibri	um
		2		-40(-25)	<u>±3</u>	Time	to reach t	thermal e	equilibri	um
		3		20 ± 2		Time	to reach t	thermal e	equilibri	um
		4		105±			to reach t		•	
		5		20 ± 2			to reach t			
		<criteria></criteria>	<u>I</u>						1	
		a. tan δ shall l	be with	in the lim	it of Item	4.4The le	akage cu	rrent me	asured s	hall not
		more than 8 tin					C			
	Temperature	b. In step 5, ta	an δ sha	ıll be with	in the lin	nit of Iten	n 4.4The	leakage	current	shall not
4.6	characteristi cs	more than the s								
4.0	CS	c. At-40°C (-2 table.	5°C), ir	npedance	(z) ratio s	shall not e	exceed th	e value o	of the fol	llowing
		Working Voltag	re (V)	6.3	10	16	25	35	50	100
		Z-25°C/Z+20		4	3	2	23	2	2	2
		Z-40°C/Z+20		8	6	4	3	3	3	3
		Z-40 C/Z+20		8	U	4	3	3	3	3
		<condition></condition>								
		<condition> According to II</condition>	EC6038	4-4No.4.1	13 method	ls, The ca	pacitor is	s stored a	ıt a temp	erature o
							•		-	
		According to II $105^{\circ}\text{C} \pm 2 \text{ with }$ DC and ripple	n DC bia peak v	as voltage voltage sh	plus the i	ated ripp aceed the	le current rated w	t for Tab orking v	ole 1. (T. voltage)	he sum o Then th
		According to II 105°C ±2 with DC and ripple product should	n DC bia peak v be teste	as voltage voltage sh ed after 16	plus the interpretation plus t	ated ripp aceed the	le current rated w	t for Tab orking v	ole 1. (T. voltage)	he sum o Then the
	Load	According to II 105°C ±2 with DC and ripple product should result should m	n DC bia peak v be teste	as voltage voltage sh ed after 16	plus the interpretation plus t	ated ripp aceed the	le current rated w	t for Tab orking v	ole 1. (T. voltage)	he sum o Then the
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria></criteria>	n DC bia peak v be teste neet the	as voltage voltage shed after 16 following	plus the real not explain the plus the real not explain the real not explain the plus the real not explain the rea	rated ripp sceed the covering t	le current rated w ime at at	t for Tab orking v	ole 1. (T. voltage)	he sum o Then the
4.7		According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris</criteria>	n DC bia peak v be teste neet the	as voltage shed after 16 following	plus the nall not explain the plus the	rated ripp sceed the covering t g require	le current rated w ime at at	t for Tab orking v mospher	ole 1. (T. voltage)	he sum o Then the
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage</criteria>	peak verbe tested the stic shale current	as voltage shoot after 16 following	plus the real not explain the real not explain the real table: table: table: Value in	rated ripp sceed the covering t g require 4.3 shall	le current rated w ime at at ments.	t for Tab corking v mospher	ole 1. (T. voltage)	he sum o Then the
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita</criteria>	peak verbe tested the stic shale current	as voltage shoot after 16 following	plus the real not explain the	rated ripp sceed the covering t g require 4.3 shall 25% of	ments. be satisfi	t for Tab orking v mospher ed llue.	ole 1. (T voltage) ic condi	he sum o Then the tions. The
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ</criteria>	peak verbe tested the stic shall courrent ance Ch	as voltage shoot after 16 following	plus the real land of expension of the real land of the r	g require 4.3 shall 25% of than 200	ments. be satisficial values be satisficial values be of the	t for Tab rorking v mospher ed lue.	ole 1. (T voltage) ic condit	he sum o Then the tions. The
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita</criteria>	peak verbe tested the stic shall courrent ance Ch	as voltage shoot after 16 following	plus the real not explain the	g require 4.3 shall 25% of than 200	ments. be satisficial values be satisficial values be of the	t for Tab rorking v mospher ed lue.	ole 1. (T voltage) ic condit	he sum o Then the tions. The
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ</criteria>	peak verbe tested the stic shall courrent ance Ch	as voltage shoot after 16 following	plus the real land of expension of the real land of the r	g require 4.3 shall 25% of than 200	ments. be satisficial values be satisficial values be of the	t for Tab rorking v mospher ed lue.	ole 1. (T voltage) ic condit	he sum o Then th tions. Th
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara</criteria>	peak value tested the stic shall ance Chance	as voltage shoot after 16 following	e plus the real land not explain the real land explain the real land the	g require 4.3 shall 25% of than 200 all be no	ments. be satisfi initial va leakage o	ed lue.	ole 1. (T voltage) ic condit	he sum o Then th tions. Th
4.7	life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition></condition></criteria>	peak value the stic shall be current ance Chance	as voltage voltage sh ed after 16 following Il meet the t ange	e plus the real not explain th	g require 4.3 shall 25% of than 200 hall be no	ments. be satisficinitial variable deakage of the	ed lue. specifie f electro	d value.	he sum of Then the tions. The the tions is the tion is the ti
4.7	life	According to IF 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b</condition></criteria>	peak value tested peak value the stic shall be current ance Chance are then are. Follow a allow	as voltage shoot after 16 following that ange stored with owing this ed to state	plus the real not explain the restriction of the real not explain the real not explain the real not explain the restriction of the real not explain the real	g require 4.3 shall 25% of than 200 all be no	ments. be satisfi initial va 2% of the leakage of	ed llue. specifie felectro	d value. lyte.	±2°C form the test
	life test Shelf	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be connected.</condition></criteria>	peak verbe tested the stic shall be current ance Chance are then are. Followered to	as voltage shed after 16 following II meet the tange stored wire owing this red to state a series I	e followin Value in Within Not more There shi	g require 4.3 shall 25% of than 200 all be no age applie he capaci room ten esistor(1k	ments. be satisfi initial va 2% of the leakage of the tors shall inperature ± 100 Ω	ed llue. specifie felectro mperatur be rema for 4~8	d value. lyte. e of 105 boved from hours. D.C. rate	tesum of the tions. The thions. The thions. The test the desired to the test the desired to the test t
4.7	life test Shelf life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be connec applied for 30m</condition></criteria>	peak verbe tested the stic shall be current ance Chance are then are. Follower allow cted to nin. Aft	as voltage shed after 16 following II meet the tange stored wire owing this red to state a series I	e followin Value in Within Not more There shi	g require 4.3 shall 25% of than 200 all be no age applie he capaci room ten esistor(1k	ments. be satisfi initial va 2% of the leakage of the tors shall inperature ± 100 Ω	ed llue. specifie felectro mperatur be rema for 4~8	d value. lyte. e of 105 boved from hours. D.C. rate	±2°C fom the test Next their d voltage
	life test Shelf	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be connected.</condition></criteria>	peak verbe tested the stic shall be current ance Chance are then are. Follower allow cted to nin. Aft	as voltage shed after 16 following II meet the tange stored wire owing this red to state a series I	e followin Value in Within Not more There shi	g require 4.3 shall 25% of than 200 all be no age applie he capaci room ten esistor(1k	ments. be satisfi initial va 2% of the leakage of the tors shall inperature ± 100 Ω	ed llue. specifie felectro mperatur be rema for 4~8	d value. lyte. e of 105 boved from hours. D.C. rate	±2°C fom the test Next their d voltage
	life test Shelf life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be connec applied for 30m</condition></criteria>	peak verbe tested the stic shall be current ance Chance are then are. Follower allow cted to nin. Aft	as voltage shed after 16 following II meet the tange stored wire owing this red to state a series I	e followin Value in Within Not more There shi	g require 4.3 shall 25% of than 200 all be no age applie he capaci room ten esistor(1k	ments. be satisfi initial va 2% of the leakage of the tors shall inperature ± 100 Ω	ed llue. specifie felectro mperatur be rema for 4~8	d value. lyte. e of 105 boved from hours. D.C. rate	±2°C fom the test Next their d voltage
	life test Shelf life	According to II 105°C ±2 with DC and ripple product should result should m <criteria> The characteris Leakage Capacita tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be connec applied for 30m</condition></criteria>	peak verbe tested the stic shall be current ance Chance are then are. Follower allow cted to nin. Aft	as voltage shed after 16 following II meet the tange stored wire owing this red to state a series I	e followin Value in Within Not more There shi	g require 4.3 shall 25% of than 200 all be no age applie he capaci room ten esistor(1k	ments. be satisfi initial va 2% of the leakage of the tors shall inperature ± 100 Ω	ed llue. specifie felectro mperatur be rema for 4~8	d value. lyte. e of 105 boved from hours. D.C. rate	tesum of the tions. The thions. The thions. The test the desired to the test the desired to the test t

Version	01		Page	7
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<criteria></criteria>
		The characteristic shall meet the following requirements.
		Leakage current Value in 4.3 shall be satisfied
	Shelf	Capacitance Change Within $\pm 25\%$ of initial value.
4.8	life	tan δ Not more than 200% of the specified value.
	test	Appearance There shall be no leakage of electrolyte.
		Remark: If the capacitors are stored more than 1 year, the leakage current may
		increase. Please apply voltage through about 1 k Ω resistor, if necessary.
4.9	Surge test	
4.10	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. Within 30° 4mm or less Within 30° 4mm or less After the test, the following items shall be tested: Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.

Version	01		Page	8
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition></condition>	ad undan tha fallowing	a an ditional	
		The capacitor shall be test Soldering temperature	ed under the following : 245±3°C	conditions:	
		Dipping depth	: 243±3 C		
	Solderability	Dipping speed	: 25±2.5mr	n/s	
4.11	test	Dipping time	: 3±0.5s		
		<criteria></criteria>			
		Coating quality	A minimu immersed	m of 95% of the surface being	
		<condition></condition>			
			shall be immersed in	to solder bath at 260±5°C for	r10=
		•		Omm from the body of capacito	
			· ·	temperature and normal humi-	
	Resistance to	for 1~2 hours before meas		temperature and normal name	idity
4.12	solder heat	<criteria></criteria>			
2	test	Leakage current	Not more than	the specified value.	
		Capacitance Change	Within ±10%	of initial value.	
		tan δ	Not more than	the specified value.	
		Appearance	There shall be	no leakage of electrolyte.	
		<condition></condition>	•		
			ding to IEC60384-4Nc	.4.7methods, capacitor shall b	ne.
		placed in an oven, the con			,
		•	mperature	Time	
		(1)+20°C		≤3 Minutes	
		(2)Rated low tempera	ture (-40°C) (-25°C)	30±2 Minutes	
4.13	Change of temperature	(3)Rated high temper		30 ± 2 Minutes	
7.13	test	(1) to (3)=1 cycle, tot			
		<criteria></criteria>	,		
		The characteristic shall me	eet the following requi	rement	
		Leakage current	Not more than the	specified value.	
		tan δ	Not more than the	specified value.	
		Appearance	There shall be no l	eakage of electrolyte.	
		<condition></condition>			
		Humidity Test:			
				citor shall be exposed for 500	
				°C, the characteristic change s	shall
		meet the following require < Criteria>	ement.		
		Leakage current	Not more than the spe	ocified value	
4.14	Damp heat	Capacitance Change	Within $\pm 20\%$ of init		
	test	tan δ	Not more than 120%		
		Appearance	There shall be no lead	-	
		пррешинес	There shall be no lear	auge of electrolyte.	
	1				

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.15	Vent test	22.4 or less Over 22.4 <criteria> The vent shall operate with pieces of the capacitor and/o</criteria>	with its py table is a Current (A 1 10 no danger	polarity revolution (A)	ersed to a I	OC power s	source. Ther
4.16	Maximum permissible (ripple current)	Condition> The maximum permissible at 120Hz and can be appl Table-1 The combined value of D rated voltage and shall no Frequency Multipliers: Coefficient Cap. (μ F) 2200	ied at max .C voltage	kimum oper e and the po	rating temp	erature	

Version 01		Page	10
------------	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Tieavy metais	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D : 1	Polybrominated biphenyls (PBB)
Brominated	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin compo	ounds(TBT)
Triphenyltin com	pounds(TPT)
Asbestos	
Specific azo com	pounds
Formaldehyde	
Beryllium oxide	
Beryllium coppe	er
Specific phthalate	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane s	ulfonates (PFOS)
Specific Benzotri	azole

Version	01		Page	11
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanδ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12	Version	01		Page	12
--------------------	---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version 01 Page 13

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

Alkali solvents : could attack and dissolve the aluminum case.

Petroleum based solvents: deterioration of the rubber seal could result.

Xylene : deterioration of the rubber seal could result.

Acetone : removal of the ink markings on the vinyl sleeve could result.

- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version 01 Page 14	Version	01		Page	14
--------------------	---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15	Version	01		rage	15
--------------------	---------	----	--	------	----